
Junior

Elektromechanischer Linearantrieb für industrielle Anwendungen

Linearantriebe der Baureihe Junior sind vielseitige Schubkolbenantriebe, die in den unterschiedlichsten Maschinen und Anlagen im industriellen Bereich eingesetzt werden. Aufgrund seiner kompakten, modularen Bauform und einer Vielzahl von Varianten und Optionen bildet er für die verschiedensten Aufgaben die ideale Antriebslösung.

Merkmale

- Kompakte Bauform
- Wartungsfrei
- Integrierte Endschalter
- Hohe Zuverlässigkeit
- Vielseitig einsetzbar

Optionen

- Integrierte Wegmessung mittels Potentiometer
- Integrierte Wegmessung mittels Impulsgeber
- Verschiedene Kabeltypen

Befestigungsarten

- An der Kolbenstange:
 Gelenkauge, Gabelkopf,
 Gelenkstangenkopf, Gewindebolzen, gefedertes Gelenkauge
- An der Gehäuseseite:
 Doppelauge; Einfachauge;
 Einfachauge 90° gedreht

Junior Übersicht

Inhaltsverzeichnis

Junior 1 4
Junior 1s 6
Junior 2 8
Junior 2 – 230 V 10
Junior 2 MSP 12
Optionen Junior 1; 1s; 2 14
Lagerböcke / Zubehör 15

Die Baureihe Junior umfasst drei Baugrößen. Zuzüglich gibt es zwei Varianten des Junior 2 Antriebes, sodass es insgesamt fünf Grundtypen gibt. Eine hohe Leistung zeichnet alle Antriebe bei einem geringen Bauraum aus. Diese kompakte Bauform wird ermöglicht durch einen parallel zur Spindel verbauten Motor. Die Drehbewegung des Motors wird über ein Getriebe auf die Trapezgewindespindel übertragen. Eine gegen Verdrehung gesicherte Kolbenstange führt die Hubbewegung aus. Die eingebauten und justierbaren Endschalter gewährleisten eine sichere Abschaltung in den Endlagen.

Junior, der vielseitige Antrieb für die unterschiedlichsten Aufgaben


Der Junior ist der Antrieb, der aufgrund seiner drei Baugrößen und einer Vielzahl von Varianten und Optionen in einem sehr weiten Bereich unterschiedlichster Applikationen zum Einsatz kommt. Dank seiner individuell einstellbaren Endschalter ist er für fast jede Anwendung adaptierbar. Kundenspezifische Sonderausführungen machen den Junior Antrieb für unsere Kunden unersetzbar.

Junior im Einsatz

Die Einsatzmöglichkeiten des Junior sind so vielzählig, dass die folgend genannten nur Beispiele sein können:

- Dosiereinrichtungen
- Ventil- und Schieberbetätigungen
- Kippvorrichtungen
- Gasverstellungen an Motoren
- Walzenverstellung
- Klappenbetätigung
- Verriegelungen

Die Fakten

	Junior 1	Junior 1S	Junior 2 (24V)	Junior 2 (230 V)	Junior 2 MSP			
Verstellkraft (N)	50 – 2.000	150 – 4.000	200 – 10.000	50 – 5.000	1.000 – 10.000			
Hubgeschwindigkeit (mm/s)	1,3 – 70	0,9 – 50	1,2 – 85	2,5 – 70	1,2 – 19			
Hublängen (mm)	max.	200		max. 350				
Betriebsspannung		24 V DC		230 V AC	24V DC			
Spannung der digitalen Ein- und Ausgänge		24V DC						
Einschaltdauer (min)		\$3/40%; \$3/60%; \$1/100%						
Temperaturbereich (°C)			-10 bis +50					
Länge Anschlusskabel (m)		1,	50		Steckkontakt			
Schutzart			IP 54					
Endabschaltung	mechanischer Endschalter							
Gehäuse	Aluminium eloxiert / Kunststoff							
Überstromschutz		ne	ein		ja			

Alle Leistungsangaben beziehen sich auf eine Umgebungstemperatur von 20°C.

Junior 1 Der kompakte und vielseitige

Die wichtigsten Merkmale

- Leicht und robust
- In drei Spannungsvarianten verfügbar 12V; 24V; 48V
- Eine Vielzahl an Befestigungsmöglichkeiten

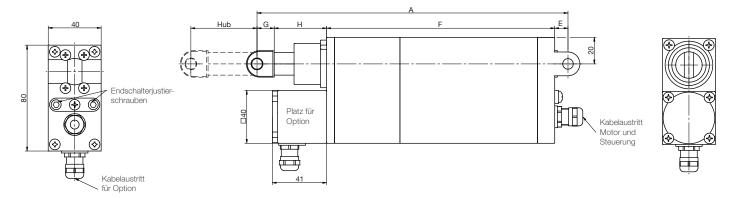
Der Junior 1 ist ein in der Praxis bewährter Schubkolbenantrieb, der in einem weiten Bereich verschiedener Applikationen eingesetzt wird. Der Junior 1 kann trotz seiner sehr kompakten Bauform eine hohe Kraft zur Verfügung stellen. Er besitzt serienmäßig eingebaute Endschalter, die wahlweise direkt den Motorstrom unterbrechen, oder als galvanisch vom Motor getrennte Einheit separat herausgeführt werden.

Der Junior 1 ist in 12 verschiedenen Varianten erhältlich, die verschiedene Kombinationen von Schubkraft, Hubgeschwindigkeit und Einschalt-

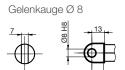
dauer abdecken. Zusätzlich gibt es drei Baulängen, die es dem Kunden ermöglichen, je nach Anforderung den für Ihn passenden Antrieb zu konfigurieren.

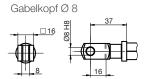
Optionen

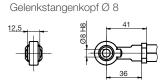
- Potentiometer
- Impulsgeber
- Standardisierte Befestigungselemente
- Befestigungen 90° gedreht
- weitere Befestigungselemente auf Anfrage
- Absolutwertgeber

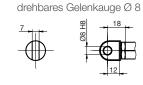

Einsatzgebiete

Linearantriebe der Baureihe Junior 1 sind vielseitige Schubkolbenantriebe die vorwiegend bei

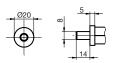

- Motoren-Gasverstellungen
- Dosiereinrichtungen
- Weichenverstellungen
- Kippvorrichtungen
- Klappenbetätigungen
- Ventil- und Schieberbetätigungen u.v.a.m eingesetzt werden

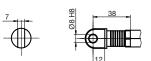

		ED: S3 40%			ED: S3 60%			ED: S1 100 %	zusätzl.		
Variante	Schubkraft (N)	Hubgeschw. (mm/s)	Nennstrom (A)	Schubkraft (N)	Hubgeschw. (mm/s)	Nennstrom (A)	Schubkraft (N)	Hubgeschw. (mm/s)	Nennstrom (A)	Planetenstufe	max. Hublänge
	50		4.0								000
Α	50	55	1,2								200
В	70	30	1,2								100
С	300	15	1,2	250	17	1,1	150	20	0,8		200
D	450	8	1,2	400	9	1,1	250	10	0,8		100
E	500	10	1,2	400	13	1,1	300	15	0,8		200
F	800	5	1,2	700	6	1,1	400	7,5	0,8		100
G	1.100	4	1,2	1.000	4,5	1,1	700	5,5	0,8	•	200
Н	1.600	2	1,2	1.400	2,5	1,1	1.000	2,7	0,8	•	100
1	1.400	3	1,2	1.200	3,5	1,1	900	4	0,8	•	200
J	1.700	1,5	1,2	1.400	1,7	1,1	1.200	2	0,8	•	100
K	2.000	2	1,2	2.000	2	1,1	1.500	2,6	0,8	•	200
L							2.000	1,3	0,8	•	100

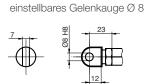

Alle Leistungsangaben beziehen sich auf eine Betriebsspannung von 24 VDC und eine Umgebungstemperatur von 20 °C!



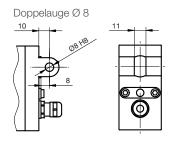
Befestigung kolbenseitig - Maß G

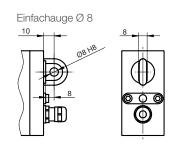






Gewindebolzen M8





gefedertes Gelenkauge Ø 8 (Druck)

Befestigung gehäuseseitig - Maß E

Maßtabelle / A = G + H + F + E

Hub (mm)	Maß H (mm)						
nub (IIIII)	Variante: A bis F	Variante: G bis L					
100	40	27					
150	90	77					
200	140	127					

Variante	Körpermaß F (mm)
A bis F	172
G bis L	185

Berechnungsbeispiel Junior 1

	$MaG \to Gabelkopf =$	37 mm
 Variante E Hublänge 100 mm	Maß H → Hublänge 100 mm =	40 mm
Befestigung Kolbenstange GabelkopfBefestigung Gehäuse Doppelauge	Maß F → Hublänge 100 mm =	172 mm
	Maß E → Doppelauge =	10 mm

Maß A = 259 mm

Junior 1s Das starke Leichtgewicht

Die wichtigsten Merkmale

- Leicht und robust
- Mit Lastmomentsperre selbsthemmend
- Eine Vielzahl an Befestigungsmöglichkeiten

Der Junior 1s ist ein in der Praxis bewährter Schubkolbenantrieb, der in einem weiten Bereich verschiedener Applikationen eingesetzt wird. Der Junior 1s kann trotz seiner sehr kompakten Bauform eine hohe Kraft zur Verfügung stellen. Er besitzt serienmäßig eingebaute Endschalter, die wahlweise direkt den Motorstrom unterbrechen, oder als galvanisch vom Motor getrennte Einheit separat herausgeführt werden.

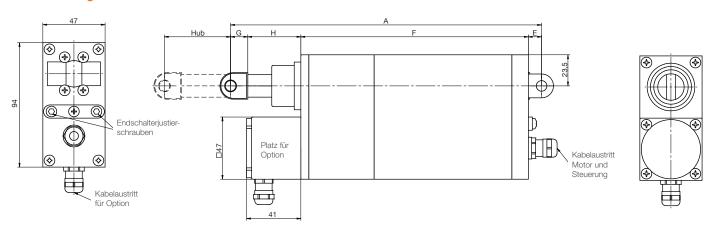
Der Junior 1s ist in 12 verschiedenen Varianten erhältlich, die verschiedene Kombinationen von Schubkraft, Hubgeschwindigkeit und Einschaltdauer abdecken. Zusätzlich gibt es drei Baulängen, die es dem Kunden ermöglichen je nach Anforderung, den für Ihn passenden Antrieb zu konfigurieren.

Lastmomentsperre – Optional kann der Junior 1s mit einer Lastmomentsperre ausgerüstet werden. Dabei handelt es sich um ein selbstsperrendes Getriebe, welches nur die Antriebsrichtung vom Motor zur Spindel zulässt. Eine Umkehrung der Bewegung von der Spindel zum Motor wird hiermit gesperrt. Damit sind diese Antriebe selbsthemmend. Die Option Lastmomentsperre kann nur für die Varianten G bis L angeboten werden. Das Körpermaß erhöht sich bei der gewählten Option um 15 mm.

Optionen

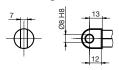
- Potentiometer
- Impulsgeber
- Standardisierte Befestigungselemente

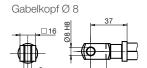
- Befestigungen 90° gedreht
- weitere Befestigungselemente auf Anfrage

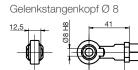

Einsatzgebiete

Linearantriebe der Baureihe Junior 1s sind vielseitige Schubkolbenantriebe die vorwiegend bei

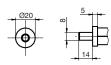
- Motoren-Gasverstellungen
- Dosiereinrichtungen
- Weichenverstellungen
- Kippvorrichtungen
- Klappenbetätigungen
- Ventil- und Schieberbetätigungen u.v.a.m eingesetzt werden.

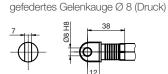

		ED: S3 15%	6	E	ED: S3 40%	D: S3 40%		ED: S3 60%	o o	Е	D: S1 100	%	Last- moment-	zusätzl.	max.
Variante	Schubkraft (N)	Hubgeschw. (mm/s)	Nennstrom (A)	sperre möglich	Planeten- stufe	Hublänge									
Α	150	50	2,5												200
В	280	22	2,5												100
С	1.000	11	2,5	850	12	2,0	700	13	1,8	450	14,5	1,3			200
D	1.250	5,5	2,5	1.050	6,2	2,0	900	6,5	1,8	600	7,5	1,3			100
E	1.350	7,5	2,5	1.100	9	2,0	950	9,5	1,8	700	10	1,3			200
F	1.800	3,5	2,5	1.500	4,5	2,0	1.300	4,7	1,8	800	5,3	1,3			100
G	3.500	2,5	2,5	3.200	3	2,0	2.800	3,2	1,8	2.000	3,5	1,3	•	•	200
Н	4.000	1,5	2,5	3.700	1,5	2,0	3.500	1,6	1,8	2.500	1,8	1,3	•	•	100
1	4.000	2,1	1,8	4.000	2,1	1,8	4.000	2,1	1,8	2.900	2,5	1,3	•	•	150
J										4.000	1,2	1,3	•	•	100
K										4.000	1,6	1,2	•	•	150
L										4.000	0,9	1,1	•	•	100

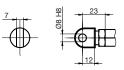

Alle Leistungsangaben beziehen sich auf eine Betriebsspannung von 24 VDC und eine Umgebungstemperatur von 20 °C!



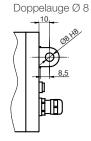
Befestigung kolbenseitig - Maß G

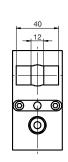


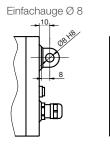


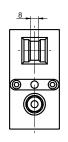

Drehbares Gelenkauge Ø 8

Gewindebolzen M8






einstellbares Gelenkauge Ø 8



Befestigung gehäuseseitig - Maß E

Maßtabelle / A = G + H + F + E

Hub (mm)	Мав Н (тт)						
Tido (Tilli)	Variante: A bis F	Variante: G bis L					
100	40	25					
150	90	75					
200	140	125					

Lastmamantananavva	Körpermaß F (mm)							
Lastmomentensperre	Variante: A bis F	Variante: G bis L						
Nein	172	187						
Ja	-	202						

Berechnungsbeispiel Junior 1s

- Variante E

- Variatite E
 Hublänge 100 mm
 Keine Lastmomentsperre
 Befestigung Kolbenstange Gabelkopf
 Befestigung Gehäuse Doppelauge

$Maß\;G\toGabelkopf=$	37 mm
Maß H → Hublänge 100 mm =	40 mm
Maß F → Hublänge 100 mm =	172 mm
Maß E → Doppelauge =	10 mm

Maß A = 259 mm

Junior 2 Unser stärkster Junior

Die wichtigsten Merkmale

- Stärkster Antrieb aus der Juniorbaureihe
- Mit Bremse lieferbar
- Auch als 12 V oder 48 V Variante verfügbar
- Eine Vielzahl an Befestigungsmöglichkeiten

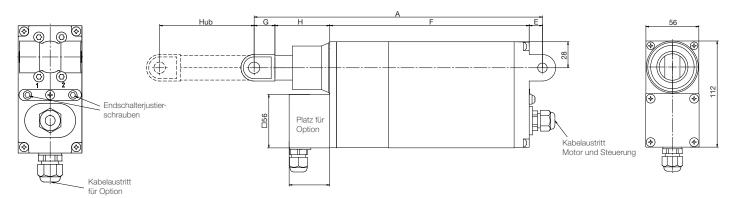
Der Junior 2 ist ein in der Praxis bewehrter Schubkolbenantrieb, der in einem weiten Bereich verschiedener Applikationen eingesetzt wird. Der Junior 2 ist mit einer maximalen Kraft von 10.000 N der stärkste Junior Antrieb. Er besitzt serienmäßig eingebaute Endschalter, die wahlweise direkt den Motorstrom unterbrechen, oder als galvanisch vom Motor getrennte Einheit separat herausgeführt werden.

Der Junior 2 ist in 12 verschiedenen Varianten erhältlich, die verschiedene Kombinationen von Schubkraft, Hubgeschwindigkeit und Einschaltdauer abdecken. Zusätzlich gibt es fünf Bau-

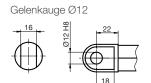
längen, die es dem Kunden ermöglichen, je nach Anforderung den für Ihn passenden Antrieb zu konfigurieren.

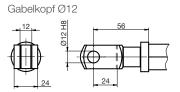
Die Varianten A bis E werden serienmäßig mit Bremse geliefert. Es handelt sich hierbei um eine Ruhestrombremse, die, immer wenn der Antrieb fährt, angesteuert werden muss. Die Aufgaben der Bremse sind die Gewährleistung der Selbsthemmung im ausgeschalteten Zustand sowie das schnelle Abbremsen bei stoppen des Antriebes. Weitere Varianten können auf Wunsch auch mit Bremse ausgerüstet werden. Antriebe mit Bremse können nicht mit Potentiometer oder

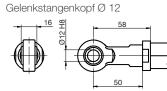
Impulsgeber ausgestattet werden, da diese den gleichen Bauraum beanspruchen.

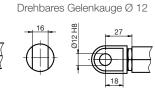

Einsatzgebiete

Linearantriebe der Baureihe Junior 2 sind vielseitige Schubkolbenantriebe die vorwiegend bei

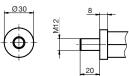

- Motoren-Gasverstellungen
- Dosiereinrichtungen
- Weichenverstellungen
- Kippvorrichtungen
- Klappenbetätigungen
- Ventil- und Schieberbetätigungen u.v.a.m eingesetzt werden.

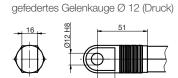

	E	ED: S3 15%	6	E	ED: S3 40%			ED: S3 60%	6	Е	D: S1 100	%	nur mit	zusätzl.	max.
Variante	Schubkraft (N)	Hubgeschw. (mm/s)	Nennstrom (A)	Bremse lieferbar	Planeten- stufe	Hublänge									
Α	400	70	6.0										•		350
В	400	38	6,0										•		200
С	1.000	19	6,0	700	21	4,7	450	24	4,2	200	26	3,0	•		350
D	1.400	12	6,0	800	13	4,7	500	13,5	4,2	250	14	3,0	•		200
E	1.800	14	6,0	1.300	15	4,7	1.000	16	4,2	600	17	3,0	•		350
F	2.600	6,5	6,0	1.700	7,5	4,7	1.500	8	4,2	800	8,5	3,0			200
G	3.000	5	6,0	2.000	6	4,7	1.800	6,2	4,2	1.000	7	3,0		•	350
Н	5.000	3	6,0	4.500	3,3	4,7	3.800	3,5	4,2	2.500	3,8	3,0		•	200
- 1	5.300	3	6,0	4.000	3,6	4,7	3.500	3,7	4,2	2.200	4,3	3,0		•	350
J	9.000	1,8	6,0	8.000	2	4,7	7.000	2,1	4,2	4.500	2,2	3,0		•	200
K	7.500	2	6,0	6.200	2,2	4,7	5.700	2,3	4,2	3.800	2,7	3,0		•	350
L	10.000	1,2	6,0	8.000	1,4	4,7	7.000	1,4	4,2	5.000	1,5	3,0		•	200


Alle Leistungsangaben beziehen sich auf eine Betriebsspannung von 24 VDC und eine Umgebungstemperatur von 20 °C!

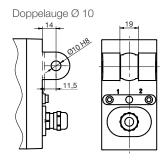


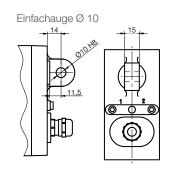
Befestigung kolbenseitig - Maß G








Gewindebolzen M12



Befestigung gehäuseseitig – Maß E

Maßtabelle / A = G + H + F + E

High (man)	Maß H (mm)						
Hub (mm)	Variante: A bis F	Variante: G bis L					
150	58	44					
200	108	94					
250	158	144					
300	208	194					
350	258	244					

Variante	Körpermaß F (mm)
A bis F	211
G bis L	225

Berechnungsbeispiel Junior 2

	$MaG \to Gabelkopf =$	56 mm
Variante EHublänge 200 mm	Maß H → Hublänge 200 mm =	108 mm
Befestigung Kolbenstange GabelkopfBefestigung Gehäuse Doppelauge	Maß F → Hublänge 200 mm =	211 mm
	Maß E → Doppelauge =	14 mm

Maß A = 389 mm

Junior 2 – 230 V Der starke Wechselstromantrieb

Die wichtigsten Merkmale

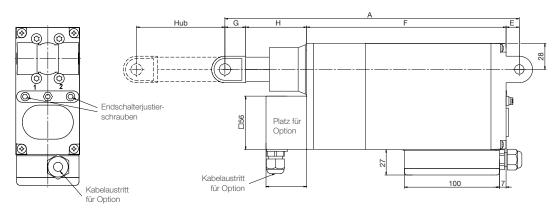
- Ein starker Antrieb mit 230 V Motor
- Selbsthemmend dank Motorbremse
- Motorkondensator im Antrieb integriert

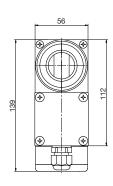
Der Junior 2 230 V ist ein in der Praxis bewährter Schubkolbenantrieb, der in einem weiten Bereich verschiedener Applikationen eingesetzt wird. Der Junior 2 230 V ist mit einer maximalen Kraft von 5.000 N einer der stärksten Junior Antriebe. Er besitzt serienmäßig eingebaute Endschalter, die direkt den Motorstrom unterbrechen. Der Betriebskondensator ist im Antrieb integriert. Die im Motor integrierte Ankerbremse muss nicht angesteuert werden. Sie gewährleistet ein schnelles Abbremsen des Antriebes und die Selbsthemmung im Stillstand.

Der Junior 2 230 V ist in 6 verschiedenen Varianten erhältlich, die verschiedene Kombinationen von Schubkraft, Hubgeschwindigkeit und Einschaltdauer abdecken. Zusätzlich gibt es fünf Baulängen, die es dem Kunden ermöglichen, je nach Anforderung den für Ihn passenden Antrieb zu konfigurieren.

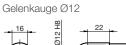
Optionen

- Potentiometer
- Impulsgeber
- Standardisierte Befestigungselemente
- Befestigungen 90° gedreht

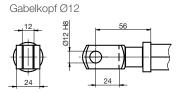

Einsatzgebiete

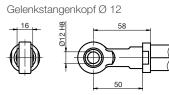

Linearantriebe der Baureihe Junior 2 230 V sind vielseitige Schubkolbenantriebe die vorwiegend

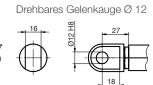
- Motoren-Gasverstellungen
- Dosiereinrichtungen
- Weichenverstellungen
- Kippvorrichtungen
- Klappenbetätigungen
- Ventil- und Schieberbetätigungen u.v.a.m eingesetzt werden.

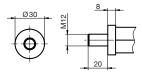

Variante	Kraft (N)	Geschwindigkeit (mm/s)	Nennstrom (A)	max. Hub
Α	50	70	0,9	350
С	400	23	0,9	350
E	700	14	0,9	350
G	1.400	6,5	0,9	350
1	2.500	4	0,9	350
K	5.000	2,5	0,9	350

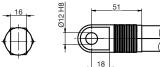
Einschaltdauer aller Antriebe: Kurzzeitbetrieb 5 min. Alle Leistungsangaben beziehen sich auf eine Betriebsspannung von 230 VAC und eine Umgebungstemperatur von 20 °C.

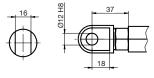


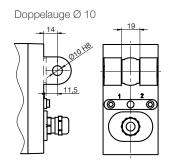


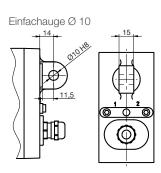

Befestigung kolbenseitig - Maß G






Gewindebolzen M12





Befestigung gehäuseseitig – Maß E

Maßtabelle / A = G + H + F + E

Hub (mm)	Maß H (mm)			
Hub (IIIII)	Variante: A bis F	Variante: G bis L		
150	58	44		
200	108	94		
250	158	144		
300	208	194		
350	258	244		

Variante	Körpermaß F (mm)
A bis E	211
G bis K	225

Berechnungsbeispiel Junior 2 – 230 V

Variante E
Hublänge 200 mm
• Befestigung Kolbenstange
Befestigung Gehäuse Dop

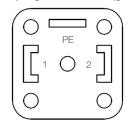

ante E Jänge 200 mm	Maß G → Gabelkopf =	56 mm
	Maß H \rightarrow Hublänge 200 mm =	108 mm
estigung Kolbenstange Gabelkopf estigung Gehäuse Doppelauge	Maß F → Hublänge 200 mm =	211 mm
estiguing denause Doppelauge	Maß $E \rightarrow Doppelauge =$	14 mm

Maß A = 389 mm

Junior 2 MSP Für den direkten Anschluss an eine SPS-Steuerung

Die wichtigsten Merkmale

- Direkte Ansteuerung über drei Digital-Eingänge 24 V
- Keine Hilfsschaltelemente notwendig
- Integrierte Überlastsicherung
- Eine Vielzahl an Befestigungsmöglichkeiten


Der Junior 2 MSP ist ein Antrieb, der für eine direkte Ansteuerung durch eine SPS ausgelegt ist. Die Motorsteuerplatine (MSP) ist eine im Antrieb integrierte Baugruppe, die die Auswertung der Endschalter und die Ansteuerung des Motors übernimmt. Zusätzlich schützt sie den Motor gegen Überlastung. Der Anlaufstrom wird nominal auf 6 A begrenzt. Der Wert kann werksseitig geändert werden. Mit dieser MSP ausgestattete Antriebe können ohne externe Leistungsschaltelemente betrieben werden, wodurch dem Anwender keine zusätzlichen Kosten entstehen. Das Steuern des Antriebes erfolgt über drei digitale 24V SPS kompatible Signalleitungen.

Überlastabschaltung – mit dem Anliegen der Freigabe und eines Fahrtrichtungssignals läuft Verzögerungszeit "t" ab. Erst danach ist die Überlastabschaltung aktiv, um durch den Anlaufstrom keine Abschaltung auszulösen. Steigt der Motorstrom über IMax, wird der Motor spannungsfrei geschaltet. Ein erneutes Starten des Motors ist erst nach dem kurzzeitigen Abschalten der Freigabe oder des Fahrtrichtungssignals möglich.

Anschluss und Steckerbelegung

- Alle Spannungsanschlüsse sind gegen Verpolung geschützt ausgeführt.
- Das Antriebsgehäuse ist massefrei.
- Die Signaleingänge sind von der Versorgungsspannung galvanisch getrennt.
- Der Antrieb ist zum festen Anschluss an eine Gleichspannungsquelle mit einer Gesamtleitungslänge am Antrieb von maximal 10 m vorgesehen.

3-poliger Stecker X2 (groß)

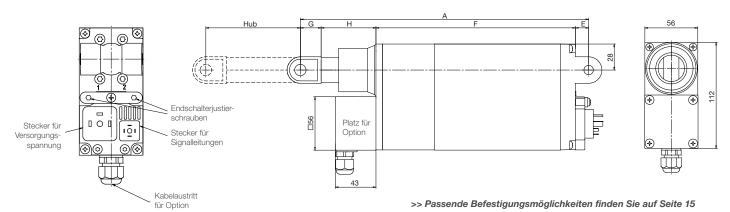


1 - GND

2 - VSS (Versorgungsspannung)

PE - Gehäuse

4-poliger Stecker X1 (klein)


1 - I_{AUS} (Eingang Fahrtrichtungssignal "Ausfahren")

2 - I_{EIN} (Eingang Fahrtrichtungssignal "Einfahren")

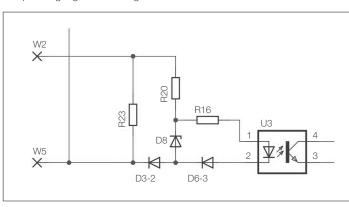
3 - I_{FRG} (Eingang Freigabe)

4 - GND

Variantentabelle

		ED: S3 15%	zusätzl.			
Variante	Schubkraft (N)	Hubgeschw. (mm/s)	Nennstrom (A)	Planetenstufe	max. Hublänge	
F	2.600	6,5	6,0		200	
G	3.000	5	6,0	•	350	
Н	5.000	3	6,0	•	200	
1	5.300	3	6,0	•	350	
J	9.000	1,8	6,0	•	200	
K	7.500	2	6,0	•	350	
L	10.000	1,2	6,0	•	200	

Elektrische Daten


Bezeichnung	Bedingung	min.	nom.	max.	Einheit
V _{ss} (Versorgungsspannung)		18	24	32	V
I _{so} (Ruhestrom)	V _{SS} = 24 V		25		mA
Signaleingänge		- 30		30	V
Signaleingänge 0 - Signal		- 30	0	8	V
Signaleingänge 1 - Signal		13	24	30	V
Signaleingänge Eingangsstrom	V _{SS} = 24 V		5		mA
t _v (Verzögerungszeit)	V _{SS} = 24 V		120		ms
$\mathbf{I}_{\ddot{\mathbf{U}}}$ (Strom für Überlastabschaltung)*			6		А
I _{AnI} (max. Anlaufstrom)*		5,8	6	6,2	А

 $^{^{\}star}$ Werte können Werkseitig geändert werden.

Eingangsbeschaltung

Die Eingangsbeschaltung sichert die Eingangspegel und Eingangsströme nach SPS-Spezifikation. Die Signaleingänge sind von der Versorgungsspannung galvanisch getrennt.

Beispiel Eingangsbeschaltung:

Steuerfunktionen

Zum Fahren des Antriebes muss die Freigabe und ein Richtungseingang auf High-Pegel geschaltet werden. Durch Wegnahme des Freigabesignals rollt der Antrieb aus. Durch Wegnahme des Richtungssignals bei anstehender Freigabe wird der Motor durch Kurzschluss gebremst.

IN Ausfahren	IN Einfahren	IN Freigabe	Funktion
X1:1	X1:2	X1:3	Funktion
0	0	0	Motor ist spannungsfrei (Ausrollen bei Stopp)
1	0	0	Motor ist spannungsfrei
0	1	0	Motor ist spannungsfrei (Ausrollen bei Stopp)
1	1	0	Motor ist spannungsfrei
0	0	1	Motor ist kurzgeschlossen (Bremsen bei Stopp)
1	0	1	Kolbenstange fährt aus
0	1	1	Kolbenstange fährt ein
1	1	1	Motor ist spannungsfrei und nicht kurzgeschlossen

Alle Leistungsangaben beziehen sich auf eine Betriebsspannung von 24 VDC und eine Umgebungstemperatur von 20 $^{\circ}\text{C!}$

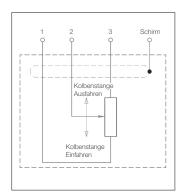
Optionen für die Baureihen Junior 1; 1s; 2

Option 1: Potentiometer

Bei Bedarf kann der Junior Antrieb mit einem Potentiometer ausgerüstet werden. Dabei handelt es sich um ein Spindelpotentiometer, welches über ein Getriebe direkt mit der Spindel verbunden ist. Mittels des Potentiometers kann zu jeder Zeit die absolute Position der Kolbenstange ermittelt werden. Es gibt alternativ ein Standardpotentiometer mit einer Linearitätstoleranz von +/- 0,25 % und ein Präzisionspotentiometer mit einer Linearitätstoleranz von +/- 0,10 %. Der Vorzugswiderstandswert beträgt 10 kOhm. Andere Werte sind auf Anfrage möglich.

Option 2: Impulsgeber

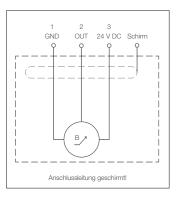
Der Junior Antrieb kann alternativ zum Potentiometer auch mit einem Impulsgeber ausgerüstet werden. Dieser ist über ein Getriebe mit der Spindel verbunden und gibt über zwei Kanäle eine Impulsfolge aus. Mittels eines Zählers kann eine kundenseitige Steuerung anhand des Zählerwertes die aktuelle Position der Kolbenstange ermitteln. Alternativ gibt es einen magnetischen Geber mit 64 Impulsen pro Umdrehung und einen optischen mit 80 Impulsen pro Umdrehung. Weitere Impulszahlen sind auf Anfrage möglich.

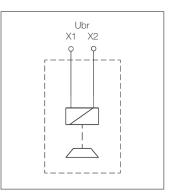

Option 3: Absolutwertgeber

Als weitere Möglichkeit kann der Junior 1 Antrieb mit einem Absolutwertgeber ausgerüstet werden. Dieser ist über ein Getriebe mit der Spindel verbunden. Im Geber selbst erfolgt die Positionsermittlung mittels einer magnetischen Abtastung berührungslos. Somit kann jederzeit die kundenseitige Steuerung die aktuelle Position der Kolbenstange ermitteln. Das Ausgangssignal ist 0...10 V proportional zur gebauten Hublänge des Antriebes. Weitere Ausgangssignale sind auf Anfrage möglich

Bremse Junior 2

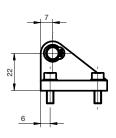
Die Varianten A bis E des Junior 2 Antriebes werden serienmäßig mit einer elektro-mechanischen Federkraftbremse ausgeliefert. Die Bremse wird mit einem separaten Kabel angeschlossen und muss immer wenn der Antrieb fährt angesteuert werden. Sollte der Junior 2 Antrieb mit einer Bremse ausgerüstet sein, kann keine andere Option gewählt werden, da diese den gleichen Anbauplatz beansprucht.

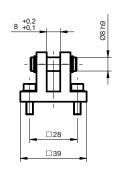

Schaltschema Potentiometer


Anschluss Belegung

Signal	Aderfarbe
OV	WH
+U ₈	BN
А	GN
Ā	YE
В	GY
Ē	PK
0	BU
Ō	RD

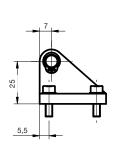
Schaltschema Absolutwertgeber

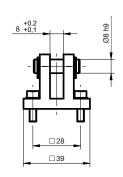

Bremse / Varianten A bis E



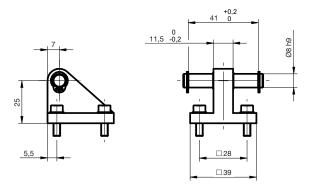
Lagerböcke zubehör

Befestigungszubehör Junior 1

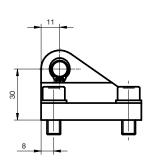


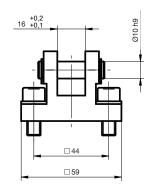

Lagerbock für Befestigung gehäuseseitig: Einfachauge Art.-Nr.: 724660101

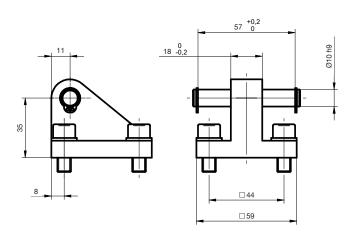
7 10 0,2 10 0,2 8 8


Lagerbock für Befestigung gehäuseseitig: Doppelauge Art.-Nr.: 750270101

Befestigungszubehör Junior 1s




Lagerbock für Befestigung gehäuseseitig: Einfachauge Art.-Nr.: 724670101


Lagerbock für Befestigung gehäuseseitig: Doppelauge Art.-Nr.: 750270501

Befestigungszubehör Junior 2

Lagerbock für Befestigung gehäuseseitig: Einfachauge Art.-Nr.: 724680101

Lagerbock für Befestigung gehäuseseitig: Doppelauge Art.-Nr.: 750271701

info@elero-linear.de www.elero-linear.de

Weitere technische Informationen finden Sie auf unserer Homepage www.elero-linear.de